Does coevolution promote species richness in parasitic cuckoos?

نویسندگان

  • Oliver Krüger
  • Michael D. Sorenson
  • Nicholas B. Davies
چکیده

Why some lineages have diversified into larger numbers of species than others is a fundamental but still relatively poorly understood aspect of the evolutionary process. Coevolution has been recognized as a potentially important engine of speciation, but has rarely been tested in a comparative framework. We use a comparative approach based on a complete phylogeny of all living cuckoos to test whether parasite-host coevolution is associated with patterns of cuckoo species richness. There are no clear differences between parental and parasitic cuckoos in the number of species per genus. However, a cladogenesis test shows that brood parasitism is associated with both significantly higher speciation and extinction rates. Furthermore, subspecies diversification rate estimates were over twice as high in parasitic cuckoos as in parental cuckoos. Among parasitic cuckoos, there is marked variation in the severity of the detrimental effects on host fitness; chicks of some cuckoo species are raised alongside the young of the host and others are more virulent, with the cuckoo chick ejecting or killing the eggs/young of the host. We show that cuckoos with a more virulent parasitic strategy have more recognized subspecies. In addition, cuckoo species with more recognized subspecies have more hosts. These results hold after controlling for confounding geographical effects such as range size and isolation in archipelagos. Although the power of our analyses is limited by the fact that brood parasitism evolved independently only three times in cuckoos, our results suggest that coevolutionary arms races with hosts have contributed to higher speciation and extinction rates in parasitic cuckoos.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coevolution is linked with phenotypic diversification but not speciation in avian brood parasites.

Coevolution is often invoked as an engine of biological diversity. Avian brood parasites and their hosts provide one of the best-known examples of coevolution. Brood parasites lay their eggs in the nests of other species, selecting for host defences and reciprocal counteradaptations in parasites. In theory, this arms race should promote increased rates of speciation and phenotypic evolution. He...

متن کامل

The evolution of sexual dimorphism in parasitic cuckoos: sexual selection or coevolution?

Sexual dimorphism is ubiquitous in animals and can result from selection pressure on one or both sexes. Sexual selection has become the predominant explanation for the evolution of sexual dimorphism, with strong selection on size-related mating success in males being the most common situation. The cuckoos (family Cuculidae) provide an exceptional case in which both sexes of many species are fre...

متن کامل

Visual mimicry of host nestlings by cuckoos.

Coevolution between antagonistic species has produced instances of exquisite mimicry. Among brood-parasitic cuckoos, host defences have driven the evolution of mimetic eggs, but the evolutionary arms race was believed to be constrained from progressing to the chick stage, with cuckoo nestlings generally looking unlike host young. However, recent studies on bronze-cuckoos have confounded theoret...

متن کامل

Pattern mimicry of host eggs by the common cuckoo, as seen through a bird's eye.

Cuckoo-host interactions provide classical examples of coevolution. Cuckoos place hosts under selection to detect and reject foreign eggs, while host defences result in the evolution of host-egg mimicry in cuckoos. Despite a long history of research, egg pattern mimicry has never been objectively quantified, and so its coevolution with host defences has not been properly assessed. Here, we use ...

متن کامل

Does coevolution with a shared parasite drive hosts to partition their defences among species?

When mimicry imposes costs on models, selection may drive the model's phenotype to evolve away from its mimic. For example, brood parasitism often drives hosts to diversify in egg appearance among females within a species, making mimetic parasitic eggs easier to detect. However, when a single parasite species exploits multiple host species, parasitism could also drive host egg evolution away fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 276  شماره 

صفحات  -

تاریخ انتشار 2009